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Abstract-The structure of the laminar flow and temperature distributions arising from finite (“strong”) 
uniform hot-fluid injection on a vertical, horizontal or inclined flat plate is analysed. The viscous effects 
and regions of temperature change are convected a finite distance from the plate and are concentrated in 
a thin detached layer. Between this layer and the plate the blown fluid retains its plate temperature and is 
convected up and away from the convector plate. For only moderately strong blowing buoyancy forces 
tend to suppress the spreading of the blown fluid and it is found that the blown fluid spreads into a 
parabolically shaped region, except if the convector is nearly horizontal when the spreading abruptly 
increases. Conversely, for very strong blowing, the injectant penetrates a massive distance from the 
convector before the buoyancy effects force the injectant plume to gradually turn, contract and ultimately 

approach the vertical. 

NOMENCLATURE X, = ~c(*~x/R (in Section 6); 

2, = (3.rr)2/32- 513 ; (x’, y’), coordinates; 
9 o, value of q(x, co): see (2.7); (x, y), non-dimensional coordinates; 

3, similarity streamfunction in (4.4); y, F, Y, jj, y*, jj, adjusted values of y in II, 
F, G, similarity streamfunction and temperature IV, V, (4.1), (5.3) and (5.1). 

in region VI for the vertical convector; 

f?S> similarity streamfunction and temperature Greek symbols 

in region II for the vertical convector; 
E, G, fi, similarity streamfunction, 

temperature and pressure in region II 
for the horizontal convector; 

9, gravity; 
G 0, pressure at the outer edge of the 

injectant region ; 
Gr, Grashof number; 

K = -dxldR* (in Section 5); 
L, Lo, length of blowing and characteristic 

length scale; 
p’, p, pressure and non-dimensional pressure ; 
PO? p, P(O)> values of p in regions I, II 

and III ; 

io, PO, P& pl, PI, p:, values ofp, in (4.1), 
(4.7), (4.10), (5.1), (5.5) and (5.10); 

Pr, Prandtl number; 
R(x), position of layer IV; 
s, s^, s, s*, position of layer II, and its 

values in (4.1), (5.1) and (5.3); 

T, L T,, fluid temperature and its values 
at the convector and in the far field ; 

UO> velocity at the outer edge of the 
injectant region ; 

(u’, v’), velocity components; 
(u, o), non-dimensional velocity components; 
V W) non-dimensional blowing velocity ; 

6 inclination of convector to the vertical; 

:, 
= (71/2--a), 
= v/-2’3%. 

Pa coegcient ‘of cubical expansion of fluid; 

8, = Gr-“4; 

P> density of fluid ; 
V, kinematic viscosity of fluid ; 
6 thermal diffusivity of fluid; 

0, non-dimensional temperature; 
@,o, values of 0 in regions II and IV; 

$, $0, q’, tic’), Ik, 0, streamfunction and its 
adjusted values in regions I-V ; 

$0, $07 IL& $1, y’,, ‘UT, adjusted values of tiO in 
(4.1), (4.7), (4.10), (5.1), (5.5) and (5.10); 

5, wall position of the streamline through 
(x, y) (in Section 3); 

[, q, ij, [, similarity variables of (4.5a), 

(3.2a), (4.4) and (3.5); 
XL, constants from (3.2) and (3.6); 

5, = 2cr*‘R*/n (in Section 5). 

1. INTRODUCTION 

THE PROBLEM considered in this paper is that of the 
effects of strong uniform blowing on the (otherwise 
attached) free convection boundary layer on a 
heated semi-infinite vertical, inclined or horizontal 
flat plate. The plate is taken to be at a uniform 
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FIG. 1. Structure of the flow field (I-VI) produced by an 
inclined convector. 

temperature and surrounded by a fluid which, far 
from the plate, is at a lower constant temperature 
and is at rest (Fig. 1). “Strong” here is taken to mean 
that the blowing velocity is so large that it is 
comparable with the maximum velocities induced 
throughout the flow field. Most previous investi- 
gations have been made into the problem of weak 
blowing, where “weak” signifies the minor blowing 
velocities that enable a conventional boundary-layer 
description to hold at large Grashof number. 
Sparrow and Cess [l] and Merkin [2], in particular, 
studied the effects of weak uniform blowing and 
uniform plate temperature. The former [l] adopted a 
coordinate expansion approach, which, unless many 
terms in the series are found, normally has the 
disadvantage of giving accurate results only for small 
values of the coordinate. Merkin [2] used a step-by- 
step numerical procedure to compute the solutions 
until the asymptotic solutions were attained. In the 

asymptotic solution, he found that there is a region 
next to the plate where the fluid is at the same 
temperature as the plate and viscosity can be 
neglected. His numerical solutions indicated an exact 
solution to this “injectant layer” and he was able to 
analyse the shear layer dividing this layer from the 
outer inviscid region. Finally, mention should be 
made of Clarke [3], who removed the Boussinesq 
approximation, made by the above authors, and 
solved the weak injection problem when the plate 
temperature is uniform but when the blowing is 
distributed non-uniformly in such a way that a 
similarity solution of the boundary-layer equations is 
available. Here again, as the weak blowing is 
increased, there is clear evidence of the viscous effects 
and temperature changes being blown far (on the 
boundary-layer scale) from the plate (see also [4]). 

The present investigation, however, considers what 
we believe to be the more practical situation of 
strong uniform blowing at uniform temperature. 
Moreover, we extend the theory (which is confined 
to laminar flow) to consider the finite-length blowing 
problems for which the above similarity approaches 
cannot apply and to determine the influence of 
inclination of the plate. Possible applications of the 
theory are to the analysis of the convector heater, to 

the spreading of hot waste gases from buildings or to 
the blow-back from opened furnaces. We shall refer 
to the blowing plate as a “convector”, for 
convenience. 

In Section 2 the structures of the flow and the 
temperature fields during strong convection are 
derived from the full (Boussinesq) governing equa- 
tions. Section 3 then discusses the vertical convector, 
where an exact solution of the main injectant layer 
flow proves possible for any strong blowing, with the 
blown fluid being confined to a parabolic shape. In 
contrast (Section 4.1), the horizontal convector 
produces a wider (though small) spread of the blown 
fluid when the blowing is only moderately strong. A 
study of the inclined convector (Section 4.2), also for 
moderately strong blowing, explains the transition 

between these two different spreads, for the spread is 
found to decrease sharply (to the parabolic shape) 
when the convector is only slightly inclined to the 
horizontal. At the other extreme, of very strong 
blowing (Section 5), progress is again possible. It is 
found that the injectant flow itself then sub-divides 
into three subzones, as the buoyancy force only 
gradually overcomes the inertia of the injectant, and 
the blown fluid penetrates a massive distance into 

the ambient fluid region before turning eventually to 
form a thin vertical plume. Further discussion is 
presented in Section 6. 

2. GOVERNING EQUATIONS, AND THE 
STRUCTURE FOR STRONG CONVECTION 

2.1. The governing equations 

We consider a heated plate (at a uniform 
temperature T, and inclined at an angle a to the 
vertical) occupying the region J’ = 0, x’ > 0 in a 
Boussinesq fluid which is quiescent and at tempera- 
ture T, (< T,,) far from the plate; here (x’, J’) denote 
Cartesian coordinates. Through the section 0 < x’ 
< L of the plate fluid of the same chemical type as 

the quiescent fluid is blown at temperature T,. 
Steady conditions are assumed for the velocity 
components u’,c’, dynamic pressure p’ and tempera- 

ture T, and we let p be the density, v the kinematic 
viscosity, K the thermal diffusivity and fi the 
coefficient of cubical expansion of the fluid, all of 
which are evaluated at the ambient temperature T,. 
Dimensionless variables are defined by 

(s,y) = L,‘(x’,y’). 0 = (T-T,)/(T,,-T,) 

(l&1:) = [g[j(7;,.- T&J m1i2(L4’,c’) (2.1) 

P = rPYBK--T,w,I-lP’ 
where g denotes gravity and L, is a reference length 
(equal to +L, say, when L is finite). With a stream 
function $(u = c7$!r7y, @ = --&/~/ax) introduced, the 
equations of motion and thermal convection become 

(‘II/ r’* (‘* ?‘lJ 

24’ 2.X r7J ?X iJ2 
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a* a’* + % a*+ 
ay ax2 ax axay 

ap = - ~ + Osina-e2V2 
ay 

a* a0 a* a0 ~2 v20, 

ay 8x ax ay Pr 
(2.2c) 

Here E = Gr- ‘14, Gr = Ligj?(T,- T,)/v* is the Gras- 
hof number, and Pv is the Prandtl number V/K. The 
boundary conditions are 

O=l, “i=O, *= -v,x 
ay 

on y = 0 for 0 < x c L/L, (2.3a) 

o= 1, 
a* 
~ = 0, 
a y 

* = - I/,L/L, 

on y = 0 for x > L/L, (2.3b) 

6, P, ti + 0 

as y -+ cc (and upstream). (2.3~) 

The dimensionless transpiration velocity is denoted 
here by VW. 

2.2. The structure for strong convection 
Our interest is in the effects of strong blowing [VW 

= O(l)] at large Grashof number (E < 1). We 
propose the following structure for the flow and 

thermal fields (see Fig. 1). First, viscous effects are 
blown a finite distance away from the wall to form a 
viscous shear layer (II). Between II and the wall a 
zone (the injectant region I) of an inviscid but 
rotational kind is left, containing only blown fluid 
which stays at the uniform injectant temperature (0 
= 1). The lack of temperature change in I is due to 
the conservation of temperature along the stream- 
lines of I. Instead, the fluid temperature falls to its 
ambient value (0 = 0) through the thin layer II, 
outside of which (in zone III) a relatively slow 
motion is induced because of entrainment. 

In I, 

$ = Ic/,, + O(E), p = p,, + O(E), 0 = 1 (2.4) 

where, from (2.2), Ic/O and p0 satisfy 

w. avo a*o avo ____- _-= 
ay axay ax a$ 

-g+cosa (2Sa) 

a+, a2ti0 -___ + * 8% 

~ = ay ax2 2~ 2xay 
-g+sina. (2Sb) 

Also, $, satisfies the boundary conditions in (2.3a), 
supplemented by 

@e = 0 on y =S(x) (2%) 

p0 = 0 on y = S(x). (2.5d) 

Here y = S(x) is the unknown shape of the bounding 
streamline ($ = 0) between the blown and the 
original fluid, while (2.5d) is required to reduce the 
pressure to a small value consistent with the low 

velocities promoted in region III. In II, y = S(x) + 
EY, $ = ET’, p = ~i5 and 0 = 0 to leading order, with 
(2.2) yielding 

aT 2*9 dT PP 

ar axa ax aY2 
_ _ 

=S(~)~+Ocosa+[l+S’~]~ (2.6a) 

_ 
s” g *= -(l+s.‘)g CA’ > 

+ @(sin a+S’cos a) (2.6b) 

aqaao dTai'O 

dr 2x 
- : = Pr-‘(1 +SC2)$. 
ax ay 

(2.6~) 

The boundary conditions are 

ae 
O-0, y-0, P-0 

ay 

as P- -cc (2.6d) 

as Y-+ +cc: (2.6e) 

where U,(x), G,(x) are the values of a$,,/ay and 
apO/ay respectively, at y = S(x)-in I. Thus (2.6d) 
merges II with I, while conditions (2.6e) match II to the 

exterior flow region III, wherein $ = a@‘), p = &‘p(O) 
to leading order, and 0 = 0. Hence in III, since the 
vorticity is zero at infinity, (2.2) reduce to solving 
V2$(o) = 0, with 

a$(")px, ap)/aJl + 0 at infinity 

$(O) = 0 on y = 0 for x < 0 

(2.7a) 

(2.7b) 

$‘“’ = So(x) on y = S(x) for x > 0, (2.7~) 

Fe(x) being the value of q for 7 + CC. 
When the blowing length L is finite, another (thin) 

viscous shear layer (IV) is expected to emanate from 
the end-point x = L/L, and to occupy a position y 
= R(x), say, for x > L/L,. The boundary conditions 
on the dividing streamline y = R(x), as far as region 
I is concerned, are analogous to (2.5c,d) and are 

t+bo = - V,+,L/L,, p. = 0 on y = R(x). (2.8) 

The actual structure of layer IV surrounding y 
= R(x) is similar to that of II above, so that again a 
mass entrainment, from the original fluid, is necess- 
ary to maintain it. Hence a relatively slow motion 
(similar to that in III) is provoked in the zone V 
lying between IV and the plate. This flow is also 
affected by the shear layer VI which grows adjacent 
to the plate in x > L/L, and which also entrains 
fluid from zone V. 

Figure 1 illustrates the above structure for strong 
convection. Below we set out to solve the first order 
problems in each zone I-III for different values of E 
and various values of VW. 
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3. THE VERTICAL CONVECTOR 

It happens that when a = 0 the solution of 
(2.5a-d) for region I is also an exact solution of the 
complete governing equations (2.2), namely 

ljJ=&“~,x, p=o, o=t. (3.1) 
w 

This was also observed by Merkin [2] in the weak 
injection case. Thus the streamlines are the parabolas 

y = [2(x-o]“*<,, where x = {(O < 4 < L/L,) is 
the point at which the streamline through (x,y) 
emerged from the plate y = 0, and the bounding 
streamline has S(x) = &(2x)“*. 

The solution (3.1) holds for any strong blowing 
V,. However, a numerical treatment of (2.6a-c) for 
the shear layer II seems necessary in general. An 
exception occurs if V, < 1 (“moderately strong” 
blowing, with which the rest of Section 3 is 
concerned), when the terms involving the derivatives 
of S may be neglected to first order. Then the shear 
layer solution has the similarity form (c.f. [S]) 

‘ii = (4x)3’4f(rl), 0 = g(q), 1’ = 0 

where q = Y/(~x)‘/~ 
(3.2a) 

and f and g satisfy 

f”’ + 3ff” - 2f ‘* +g = 0, g” + 3Prj$ = 0 (3.2b) 

with f’(a) = g(m) = 0, f’(-m) = 2-l”, g(-co) 
= 1, from (2.6a-c), since here U,(x) = (2x)“‘. The 
numerical solution [2] gives f(x) = A/2(2)“*, where 
X = 1.539 if Pr = 1. 

For the external flow in III, we have in (2.7~) that 
F&) = ;x3:4 and that, since V, is small, S(X) may 
be replaced by zero to lowest order in V,. Hence 

@O’= 21/2j-(x* +J2)3’8 cos[~tan-l~~j-~J. (3.3) 

If the blowing length L is infinite, (3.1)-(3.3) 
complete the first order solution throughout the flow 
and temperature fields. If L is finite (so that Lo 
= +I,), regions IV, V and VI also need consideration. 

We have, in IV, Y = R(x)+E~, where R(x) = [2(x 
-L/L,)]“‘I/;, from (3.1) and F is O(1). Also, $ = 
- v,(L/L,)+&‘, 0 = 0, p = 0 to leading orders and 
the controlling equations for 9, 0 are again (2.6) 
effectively but subject to the matching conditions 

(3.4a) 

Replacing \k by -9, 6 by 8, p by - y and (x 
-L/L,) by x, we recover the problem of layer II. 
Therefore Q(x, -m), which is related to the mass of 
fluid entrained into IV, satisfies 

P(x, -‘xc) = - [4(x-L/L,)]3’4f‘(co) 

= -2(x - L&,)3/4 (3.4b) 

when VW is small. This gives the required matching 
condition for the inviscid irrotational zone li-. 
However, before we can consider V, we first need to 
analyse the free convection boundary layer VI 
growing from x = L/L,, since this also contributes 
an O(E) term to the matching. The problem in VI is 
governed by the classical Pohlhausen equations; if 

$ = -~,,~+cr4(.~-~~~3:IF(;). 

H=G(i), :=;p(x;&),‘!4’ (3.5) 

then the governing equations for F and G are: 

F”‘-2F’*+3FF”+G = 0, 

G” + 3PrFG’ = 0 
(3.6) 

with F(0) = F’(0) = 0, G(0) = 1 and F’(m) = G(m) 
= 0. Ostrach [6] has solved these equations for a 
wide range of Prandtl number; in particular, for Pr 

= 1, he found that F(X)) = 0.5194. So in general, for 

i % 1, 

* Z -v~~-+cI:(.~-L,Lo)J~J+o(~~ 
0 

where A = 43’4F(s) > 0. Since both i and 1 are 
positive, fluid is entrained from region V into both 
the free convection layers IV and VI. 

Neglecting terms of O(E), we have in V that 

L 
$= -VI,-+&(andH-O), 

Lo 

where @ satisfies Laplace’s equation with 

3.‘4 

@(x,O+)=I x-fl : 
( 1 

Y > L/L, 
0 1 

i (3.7) 

@[x, R(x)-] = ‘@, - x): x > L/L, 

and zero vorticity upstream. The solution for @ is 
obtainable when V, is small since then (3.4b) may be 
used in (3.7). A small region of adjustment persists 
near x = L/L,, _I’ = 0. wherein [my- (L/L,)] and y 
are both 0( V,), but for [X - (L/L,)] finite and posi- 
tive we scale v = V,.Y, so that 0 < Y < (2)“2[x- 

(wo)I I’* in V and @ satisfies ?*@/?Y* = 0 to lead- 
ing order. Hence the solution satisfying (3.7) is 

/ , \I!4 

@=A x-; 
C 1 

3:4 Y .X-F 
i 1 - (i+X)--- O 2”’ (3.8) 

0 

Thus the entire first order solution is again 
obtainable, for finite values of L and small values of 
V,. Figure 2 gives a sketch of the flow pattern 
induced by the vertical convector. 

We turn next (Sections 4 and 5) to solutions for 
nonzero values of X, taking L to be infinite, for 
convenience, in Section 4. We concentrate mostly on 
the injectant zone I since, as the exact solution (3.1) 
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t 
FIG. 2. Sketch of the streamlines induced by a vertical 

convector. 

above has shown, the features of the other zones 
II-VI follow fairly readily from those of I. Section 4 
considers moderately strong blowing (V, small) 
again, while Section 5 considers “very strong” 
blowing (V, large). 

4. THE HORIZONTAL OR INCLINED CONVECTOR 
FOR MODERATELY STRONG BLOWING 

4.1. The horizontal case 
For a = n/2, a numerical treatment of (2.5) in the 

injectant region I also seems necessary to determine 
the bounding streamline shape S(x) and slip velocity 
U,(x) when V, is O(1). However, as in the case of the 
vertical convector, progress can be made when V, 
< 1. Then the solution in I has the expanded form 
(for x finite) 

$0 = v,$, + O(V$34’3), po = v,““$, + O(I/,), 

S(x) = V,‘3S(x) + O( V,) (4.1) 

with y = v:‘3h where the leading terms satisfy, from 
(2.5), the non-linear but simplified equations 

aljo a21jo aljo a21jo a;, ___----- 
aj axa? ax aj2 ax 

(4.2a) 

with 

A 

()= -5!?+1 
ai, 

(4.2b) 

$o=Oon$=S(x),$,=-xonjj=O (4.2~) 

6, = 0 on $ = S(x). (4.2d) 

From (4.2b) and (4.2d), &, = $-s(x) and on 
substituting this result into (4.2a), we arrive at the 
result (from [7]) 

s x 

S(x) = 2- l/2 dt 
o [S(x) -s^(<)]“2 (4.3) 

The solution is s(x) = ax213 where ;i = (3~)“~2-~/~. 
Using this we find, from (4.2), that the flow in I is 
given by 

Having found the solution for the horizontal and 
vertical convectors when V, is small, we consider 
next the inclined convector [0 < c( < 7r/2]. Parti- 
cularly intriguing is the property that S(x) cc x2j3 for 
the horizontal convector, whereas S(x) cc xi” for the 
vertical one, so that an investigation of the transition 

when 0 < CI c ~12 between these two growth rates is 
required. Before discussing the range 0 < c1 < n/2, 
however, we observe that when L is infinite the 
solutions for V, small and x finite are equivalent to 

solutions for V, finite and x large. For the factor V, 
in (2.5) can then be scaled out of the governing 
problem and it is seen that the results above, and in 
Section 5 below, correspond to asymptotic down- 
stream results for Vi2 x 5> 1. Hence the small- 
V, solutions (for any a) are non-uniform in a small 

region where x, y are O(V:), within which the full 
equations (2.5a,b) are retrieved. This facet explains 
the simplicity of the solution (4.4), for instance. In 
the more realistic case where L is finite, however, this 
reinterpretation does not hold. We note too that, for 
the horizontal convector only, some symmetry is 
expected about the line x = L/2L, if L is finite. 

4.2. The inclined case 
I$,, = xf(fi) where 4 = $/x”~ (4.4) The character of the flow field for the inclined 

and 

; (2~)“‘~ = ; + (-3)“” 

x [1-(-f)2’3]1i2-sin-1[(-~)“3]. 

It is noteworthy that, if the injection velocity is cc xm 

rather than constant, the consequent analogue of 

(4.3) yields s^ cc x 2/3(m+ ‘) which is consistent with the 
result in [4]. 

The free convection layer II is then described by a 
similarity solution: 

q ZZ V,““Xz’3i’(T^), 8 = c(g), 

p = v,- 1/6x113fQ5^): 
p6p 

f = * (4.5a) 

to leading order in V,. Here E, 6, fi satisfy 

3Pf’ + 2pp” - (P)2 + 2&9’ = 0 

P-G=0 

3Pr-‘@ + 2% = 0 1 

(4.5b) 

from (2.6), with p(co) = 0, p(-co) = (2r1)“‘, 
&-co)= 1, &co)=O, &(-co)= 1 and fi(co)=O. 
A numerical solution (see Fig. 3) yields the value 
&co) = 1.7253 for Pr = 1. 

Finally, for the external flow in III, we find that 
A 

x cos[i tan-‘(:) -i] + O(V,‘/“) (4.6) 

which satisfies (2.7~) in its limiting form for small V,: 

IJ(O) = V,““X”~P(~O) on y = 0. 
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FK. 3. 

i 

1 -05 

r 

i -I 0 

Calculated solution curves for (4&b) when Pr = 1; here i, = P/3”2(26)1’4, f.?, = G, [< 
= 3-1:2(2~)1~45, and P,(m) = 0.7694. 

convector depends on whether 0 Q LY < n/2 or 
a 2 n/2. For we find that a fast transition occurs, 
between the behaviours S cc x1/’ and S cc x213, when 
the convector plate is just slightly inclined to the 
horizontal. 

First, if 0 < c( < 7r/2, then when V, < 1 

$0 = v,$,, PO = V,&, S = v,s (4.7) 

to leading order in I, with _r = IQ. The governing 

equations in I yield the solution (as in Section 3) 

2x V2 
S(x) = ~ 

C 1 
(4.8) 

cos x 

so that S(x) z x I:’ for all these values of CI. The 
joining with the (exact) vertical plate solution 
(Section 3) as x + 0 is regular, but no direct match 
exists with the horizontal case as cz + n/2, since there 
S(x) x .x*‘~. Second, therefore, there must be a 
singular regime when (7t/2- c() is small, a fact 
suggested also by the (cos 3)) ‘I2 factor in (4.8). 

If we write CY = 7r/2- j, with 6 small, then (4.8) 
becomes invalid when L? is 0(Vi2!3) (6. = V,f/3x*, say), 
since then S in (4.7) and in (4.1) achieve comparable 

orders of magnitude. When c(* is O(l), 

i0 = V&, p. = vyp;. s = vys* (4.9) 

with r = V,!3y*, to leading order in I and (2.5) yields 

PO* = I’* - S*(x) (4.10a) 

Here (4.10a) stems from integration of the I’- 
momentum equation, while (4.10b) follows from the 
x-momentum equation with pz substituted from 
(4.10a). Thus the effective pressure gradient driving 
the injectant layer I is the sum of the buoyancy force 
(a*) and the convective force (S*‘). The boundary 
conditions on (4.10b) are $,* = 0 on y* = S* and $z 
= --x, a*t/?l;* = 0 on v * = 0. The solution, from 

[7], gives the integral equation 

s*(x) = 2- 192 s d5 ,ls*(x)-s*(5)+a*(x--r,,1~2 
(4.11a) 

to determine S*(x). This may be manipulated to 
yield x in terms of S*, as follows. Setting R* = S* 

+a*x, we treat dx/dR*[ = -K(R*)] as a function of 

R* in (4.1 la), so that 

R* 

R* +a* s K(t)dt = -2-1’2 s R* K(q)@ 
0 (R* -q)‘!* 

(4.1 lb) 
0 

Integration of the RHS by parts and then differen- 
tiation with respect to R* produces 

1 +a*K(R*) = -2-l/* s R’ K’(q)dq 
o (R*_y)1'2.(4'11c) 

Upon substituting for K from (4.11~) into (4.11b), 
and putting q = R* sin* 4 +qcos* d in the resultant 
double integral, we obtain 

-2ij2b*+z* /(*K(r)dr) 

2 
= --_R *1/2 

c(* 
- &K.(R*) (4.11d) 

which, on integration, yields the relation 

X = z-2(t/x)‘!2+eTerf(r1’2)+1-eZ. (4.12) 

Here X = ~LY*~x/x, r = 2a**R*/n and we have 
assumed that R*(O) = 0. 

The relation (4.12) accounts for the transition 
from the horizontal convector form (S cc .x2j3, hold- 
ing when a* $ 1) to the inclined convector form (S 
x x1j2, holding when t(* + 1). When a* < 1, (4.12) 
gives [when x = O(l)] 

S* = ,4x*;3+g* (4.13) 
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From (5.1) and (2Sa,b), u1 = a$,/ay satisfies V’u, 
= 0. Also, from (5.2) and (2Sc,d), (2.8), the boundary 

conditions on u1 are &,/ax = -sinu at x = 0,2 and 
u1 = 0 at y = 0 (together with boundedness as y 
+ co). The solution for u1 is therefore 

x 

FIG. 4. Graph of the solution (4.12) for T vs X. The dashed 
lines indicate the asymptotes (4.13) and (4.14). 

matching with the results of Section 4.1, while for a* 
9 landx=O(l), 

s* Z ~~)“z+~*-~!l-~)+o(~*-7/~) (4.14) 

which continues into (4.8). The solution of (4.12) for 
general values of a*, obtained numerically, is drawn 
in Fig. 4. 

The free convection layer (II) flows and tempera- 
ture distributions follow similar lines to those 
presented in Sections 3 and 4.1, as do the entrain- 
ment induced exterior flows III. 

5. THE HORIZONTAL OR INCLINED CONVECTOR 
FOR VERY STRONG BLOWING 

When V, is large analytical progress is again 
possible, with the injectant region I itself now 
subdividing into three subzones @, 0, 0, con- 
sidered in turn below. We concentrate on the finite 
blowing length problem, choosing L, = L/2; the 

structure @, 0, @ is shown diagrammatically in 
Fig. 5. 

5.1. Subzone @ 

This subzone forms the initial, fairly long, part of 
the blown region, in which the blown fluid travels 
almost straight from the plate (Fig. 5) because the 
inertia of the very strong convection dominates over 
the buoyancy forces. In 0, y is O(1) and 

tiO = - v,x+ v;-ltil f. .., po = p1 f... (5.1) 

Also, for VW large it proves best to consider the 
dividing streamlines, emanating from x = 0 and x 
= 2, as functions of y rather than x, i.e. x = S(y) and 
x = 2 + R(y) correspond to the curves y = S(x) and 
y = R(x) of Section 2 respectively. Then, in 0, 

S(y) = V;‘S,(y) +. (a), 

R(y) = V,-‘&(y)+...(b) 
(5.2) 

u1 = (l-x)sinn+$A.cos[(2n+l)y] 

xexp[-(2n+l)y]+Cy (5.3a) 

where 

A,= -8sina/n*(2n+l)* (n=0,1,2 ,...) (5.3b) 

but the constant C is as yet undetermined. The 
continuity and momentum equations now yield 

$I = (l-x)ysincc++Cy* 

x {1-exp[ -(?n+l)y]} 

p1 =(cosa-C)x+%A.sin[(2n+l)y] ’ 

(5.4) 

x exp[-(2n+l)y] 

where the conditions $I = 0 at y = 0 and p1 = 0 at 
x = 0 [from (2.5d)] have been applied. But, from 
(2.8) and (5.2), we also require p1 = 0 at x = 2. 
Therefore C = COSU, and the solution in @ is 
complete. The almost straight dividing streamline 
shapes of (5.2) can be determined by applying tie = 0 
on (5.2a) and tiO = -21/, on (5.2b). However, the 
expansions (5.1) become invalid when y grows to 

FIG. 5. Schematic diagram of the injectant flow structure 
(Q-@-Q) during very strong blowing (VW % 1) 

so that the dividing streamlines are nearly straight. from an mclmed convector. 
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O(&) [since then $, in (5.4) becomes 0( V,‘), 
invalidating (5.1)] and so a new subzone @ occurs 
then. far from the convector. 

5.2. Subzme @ 

In @ we find that the first significant bending 
(upwards) of the injectant takes place (Fig. 5) due to 
the gradual influence of the buoyancy forces on the 
very strongly convected fluid. However, the injectant 
width remains virtually unaltered during subzone @. 
Thus, in 0, the expansions, implied by Section 5.1, 
and further considerations of consistency, are 

$0 = I/,,,(-_s+~Y~cOscc)+Y1 + . . . . 

p0 = v,,,‘P, +... 
(5.5) 

where J = V,Yr and Y, = 0( 1). Also, now 

S=S,+V,:‘S,+...(a), 

R = d,+V’:‘d,+....(b). 
(5.6) 

The governing equations become the linear system 

SC’, i v, 
Pm+iy=o, 
(7X I 

?U > 
Y,cos,~+v~cos.+~= -5, (5.7) 

’ 1 (7x 
- 7 

Y,cosa3+%=sina 
c’s ?Y, 

from (2.5a,b) with (5.5) (here U, = Nr/‘?Yr, VI = 
- aY’,/dx). The boundary conditions on (5.7) require 
matching with subzone @ as Yr + 0 and P, = 0 at x 
= s,, R, from (2.5d). (2.8). The solution is 

V, = Y, since, C;, = (I -_u)sina. 

Y’, = (l-s)Y,sincc, P, =O, 
(5.8) 

therefore. Hence, applying c1/, = 0, -2VM, at .x = 3, 
2 + R respectively, we have 

s, = R, = ;Y;COSZ. 

S, = R, = (l-fYtcos~()Yrsinn, 
(5.9) 

implying the gradual bending upwards (but with 
unchanging injectant width) referred to above. 

Clearly, a further breakdown of the expansions 
will occur when Y, increases now, because of the 
growth of Yr in (5.8) and the form of $0 in (5.5) [see 
also (5.6) with (5.9)]. The breakdown happens when 
Y, is 0( V,), or _I* is 0( v,‘), which leads us to the third, 
and final. subzone of the injectant region, much 
further from the convector. 

5.3. Subzone @ 
This final stage of the injectant motion involves 

both the complete turning of the blown fluid, from 
its original direction (normal to the inclined plate) to 
the vertically upward direction, and a considerable 
contraction of the injectant width as the vertical 
direction is approached (Fig. 5). The turning is 
completed as the buoyancy forces eventually over- 
whelm the initial impact of the very strong con- 
vection Analytically, it proves convenient to use the 

displaced coordinate .? = .x-R(j)) (centred on the 
upper dividing streamline) rather than x in the 
injectant region. Then, in 0, where _v = V,fZ and Z, 
.? are 0( 1 ), 

and 

$0 = V,,Y:+ . . . . p0 = p:+... (5.10) 

R(y) = VzRT(Z) +. (a), 

S(J) = i?(y) +sT(Z) + (b). 
(5.11) 

Here, essentially, ST(Z) defines the thickness of the 
injectant region, while R(J) defines its shape. The 

expansions in (5.10), (5.11) are implied by the 
properties of subzone @ as Y -+ m there. From 
(5.10) and (2.5a,b), the motion in @ is controlled by 
the nonlinear equations 

where UT = L’Y T/c’Z, VI* = - i;Y T/&. 

The boundary conditions become 

22 
v1* 5 1 + Z sin c(, R:(Z) - ---- cos CI 

2 

as Z-0 

PT = 0 on X = 0 and S = -ST(Z) 

(a) i 

I 
(5.12) 

(b) 

(5.13a) 

(5.13b) 

[Yf=Oon_v= -ST,Yf= -2on.?=O (5.13c) 

from matching with @ and from (2.5c,d), (2.8). 
We propose that PT = 0, which satisfies (5.13b) 

identically. Then (5.12a) implies that VI* is inde- 

pendent of X, so that (5.12b) yields 

V;” = VT(Z) = (1 +2Zsincx)1’2. 

Then (5.12a) yields the differential equation 

d2R; 
(1-t 22 sin E) dZ2 = 

dRT 
cosix-since-- 

dZ 

for R:(Z). The solution satisfying (5.13a) is 

R;(Z) = cot z[Z - (1 + 22 sin ~()r,~ 

x cosec c( + cosec X] 

(5.14) 

(5.15) 

which defines the shape of the blown region. Also, 
integrating (5.14) to obtain Y,T, and applying (5.13c), 
we find that the thickness of the blown region is 
given by 

ST(Z) = 2(1 +2Zsina)-“2. (5.16) 

The shape and thickness of the injectant region 
during this final stage (subzone 0) are drawn in Fig. 
6(a), for the particular inclined case c( = 71/6, and in 
Fig. 6(b), for the horizontal case c( = 7r/2 where the 
bending effect (5.15) vanishes, of course, but the 
contraction (5.16) persists. Both the vertical and the 
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FIG. 6. (a) The shape of the upper dividing stream- 
line [in (5.15)] and the thickness of the injectant 
region [in (5.16)] during the third stage @ of the 
very strongly injected flow, for the inclined case c( 
= x/6. (b) The shape of the injectant region for a 

very strong, horizontal, convector. 

horizontal cases are included (with some simplifi- 
cation) in the above analyses of the three subzones 
0, 0, 0; the vertical case merely repeats the exact 
solution of Section 3, of course, and the contraction 
effect from (5.16) vanishes. With the exception of the 
vertical case only, the injectant region contracts 
(proportionally to Z- rj2) as Z increases still further, 
from (5.16), and the direction of the blown plume 
then approaches the vertical, from (5.15). The main 
physical balance of forces during the final stage @ is 
as follows. (5.12a) is the playoff between buoyancy 
effects (the RHS, since P$ = 0) and the centrifugal 
effect normal to the injectant flow (the LHS) due to 
the turning of the strong blown injectant; (5.12b) 

expresses the balance of convective and buoyancy 
forces normal to the convector plate. Finally, the 
other regions (Fig. 1) of the problem also subdivide 
when V, is large, since they are always driven by the 

properties of the injectant region, but we need not 
pursue their detailed features since the injectant 
properties above describe the principal attributes of 
the very strong convector heater. 

6. FURTHER DL‘KXJSSlON 

Like the solution in Section 3 for the vertical 

convector, the moderately strong blowing solutions 
for the horizontal and inclined convectors in Section 
4 can be extended to deal with finite lengths of 
blowing. Similar phenomena to those of Section 3 
then arise, with the original fluid in zone V being 
entrained into both the detached free-convection 
layer IV and the wall layer VI, so that again the 
motion in V is generally towards the convector plate. 
If, beyond the blowing length, the plate is maintained 

at a temperature different from T, then the wall layer 
VI set up has a different character. 

Thus the main attributes of strong convector 

heating are obtainable analytically for small (Section 

4) or large (Section 5) V, values if 0 < c( < rr/2 
(Sections 4 and 5) and for any I’, value if c( = 0 
(Section 3). For small V, (moderately strong blow), 

the bounding streamline between the hot and the 
cold fluid takes a parabolic shape almost through- 
out, the exception occurring when the convector is 
only slightly inclined to the horizontal (there the 
shape changes fairly abruptly, to have a larger 
growth CC .x2i3 when the convector is horizontal). 
As might be expected, the fluid blown from a 
moderately strong convector spreads only a small 
distance (CC V, < 1 for 0 < r < 7r/2) from the con- 
vector, at least until the endpoint of the blow (see 
below). In contrast, the penetration from a very 
strong convector is massive (Figs. 5,6), the typical 
distance penetrated being O(V:) ($ 1). Further, the 
adjustments of the very strongly injected flow, from 
its initial uniform state, perpendicular to the con- 
vector, to its final vertical form, involve a very 

gradual and subtle erosion of the blowing effect by 
the buoyancy forces (Section 5). The existence of the 
above analytic solutions for V, small and V,, large 
also, to a certain extent, obviates the need for 
numerical solutions in the range VW = O(l), although 
the latter would complete the description of strong 
injection and would answer certain outstanding 
questions [e.g. does the injectant flow always 
approach the vertical if the blowing length is finite 
(as in Section 5); if so, how; and does the injectant 
plume contract (as in Section 5) in general?]. But 
perhaps more significant for practical purposes (in 
the heating of a room, for example) would be a study 
of strong blowing into a confined space rather than 
into the unconfined space that we have considered. A 
complicated circulating motion seems likely then, 
with the blown fluid being diverted by the boun- 
daries into different parts of the space. 
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In order to determine the practical relevance of the 
theory, e.g. of the assumption of laminar flow, an 
experimental study of the convector heating would 
be desirable. However there seems to be a dearth of 
experimental work in this field, and what there is 
concerns the weak blowing situation, e.g. Lewis, 
Novotny and Yang [8]. It would certainly be 
interesting to see experiments performed to validate 
(or otherwise) our proposed structure. On the 
theoretical side, a stability analysis of the problem 
might shed some light on the mechanism of 
transition to turbulence. Again, however, we know of 
no work that relates directly to the convector 
problem where the main feature is the injectant 
plume I and its associated convection layers II and 
IV. There is an extensive literature on non-blowing 
free convection situations, and a thorough account 
with extensive references, including some on plume 
problems, is given by Pera and Gebhart [9]. Among 
many interesting and noteworthy points apparent 
from these stability investigations are that, for flows 
above heated plates, inclining the plate to the 

vertical destabilises the flow and, for a horizontal 
surface, the earliest onset of boundary-layer sepa- 
ration occurs at a local Grashof number (based on x 
rather than L,) of about 5 x lo5 ; of course, decreas- 
ing the inclination of the plate delays the onset of 
separation. These results are directly applicable to 
the free-convection layer VI. As far as the injectant 
fluid is concerned, we note that the buoyancy forces 
act in such a way as to cause it to flow in the 
(generally) more stable configuration of a vertical 

plume. 
Finally it is of interest to consider numerical 

values associated with domestic (fan) convector 
heaters. These heaters typically operate in such a 
way that a 3kW fan heater raises the air temperature 
by about 40°C and blows the hot air out with a 
velocity in the range 50-5OOcms-‘. Thus, if we 
consider a 1.5 kW heater with a 5cm deep outlet, 

and take air as our working fluid, we have say : 

T, = 4o”C, T, = 2o”C, L, = 5cm, 

v, = 0.1502cm2 s-l, 9 = 981 cm sm2 (and b = l/293). 

Hence the Grashof number is about 3.7 x lo5 and 
the dimensionless transpiration velocity VW lies 
between 2.8 and 28 ; in other words, Gr is very large 
and VW can be O(1) or fairly large. Therefore the 
present work, and in particular that of Section 5, 
would certainly seem to be appropriate to the 
domestic convector. 
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UN MODELE DE CONVECTEUR A PARTIR D’UNE PLAQUE PLANE 

R&sum&On analyse la structure des champs d’&coulement laminaire et de tempCrature resultant d’une 
injection finie (“forte”) et uniforme de fluide chaud sur une plaque plane verticale, horizontale ou 
inclinte. Les effects visqueux et les rigions de changement de temptrature sont diplacts B distance finie 
de la plaque et sont concent& dans une mince couche dCtach&e. Entre cette couche et la plaque, le fluide 
garde sa tempkrature de plaque et ilest d&plac& vers le haut en s’kloignant de la plaque. Pour un soufflage 
mod&C, les forces d’Archimkde tendent a supprimer l’klargissement du fluide souffl& et on trouve que le 
Guide soufflC s’epanouit dans une rtgion de forme parabolique, sauf quand le convecteur Ctant presque 
horizontal, l’tlargissement crolt de faGon abrupte. Pour un soufflage re&s important, l’injection 
ptnttre sur une grande distance vers le convecteur avant que l’effet d’Archimkde oblige le courant 

d’injection g tourner progressivement, g se contracter et g s’approcher enfin de la verticale. 



A model of convector heating from a flat plate 319 

MODELL EINER KONVEKTOR-HEIZUNG VON EINER FLACHEN PLATTE 

Zusammenfassung-Es wird die Struktur der laminaren Stromung und der Temperaturverteilungen 
analysiert, die durch eine begrenzte (“starke”) und gleichmagige Einspritzung eines heit3en Fluids auf 
eine senkrechte, waagerechte oder geneigte flache Platte entstehen. Die Zahigkeitseffekte und die Gebiete 
mit Temperaturanderung werden urn eine gewisse Entfernung von der Platte fortbewegt und 
konzentrieren sich in einer schmalen abgeldsten Schicht. Das ausgeblasene Fluid behalt zwischen dieser 
Schicht und der Platte die Plattentemperatur und wird nach oben und von der Konvektorplatte weg 
transportiert. Bei nur maRig starkem Ausblasen neigen die Auftriebskrafte dazu, die Verbreitung des 
ausgeblasenen Fluids zu unterdrticken, und es zeigt sich, das das ausgeblasene Fluid sich in einem 
Gebiet parabolischer Form ausbreitet mit Ausnahme des Falles, wenn der Konvektor beinahe waagerecht 
ist und die Ausbreitung schlagartig zunimmt. Im Gegensatz hierzu stromt das Fluid bei sehr starkem 
Ausblasen eine weite Strecke vom Konvektor weg, bevor die Auftriebskrafte die Fluidsaule allmahlich 

ablenken, kontrahieren und letztlich in die Senkrechte bringen. 

MOAEJIb KOHBEKTMBHOrO TE’lEHMII Y NlOCKOti nJIACI’MHb1 

AHHOTWII- AHaJNWpyeTCn CTpyKTypa JIaMHHapHOI'O nOTOKa A paCnjXZRe.UeHkiit TeMnepaTypbI "p&i 

KOHe'iHOM (((CWSILHOM))) OnHOpOnHoM BLlyBe rOpSWeti HAL,KOCTU Ha BepTHKaJlbHOk rOpkI3OHTanbHOi-i 

KllW HaKJIOHHOfi n,,OCKOfi n,,aCTAHe. 3+$eKTbI B113KOCTU 5, Ten,,OnpOBODHOCTH npOF,BJ!%,TC~ Ha 

KOHe'lHOM paCCTO5THBB OT nJlXTWHb1 W KOHUeHTpWpy,OTCR B TOHKOM OTTeCHeHHOM CJIOC. Mexny 

~TAM cnoehi n nnacT8Hol BnyBaeMan winKoCTb, coxpaHnlouraa TeMnepaTypy nnacTkiHb1. nBkimeTcs4 

OT nJIaCTHHb1. np&i yMepeHHOM BnyBe nOdTtiMHaR CIUIa IIpenPTCTByeT paCTeKaHHw BnyBaeMOfi XWI- 

KOCTW. HakeHo, 'IT0 npki 3~0~ BnyBaeMan XWlKOCTb pacnpocTpaHneTcs4 B 06nacrn napa6onw 

VeCKOti @OPMbI, 38 WCKJIl‘YIeHWeM CJly'faFl nOYTH TOpH30HTaJbHOTO paCnOJO,KeH,W n,,aCTI(Hbl. KOrLla 

PCTeKaHHe XWKOCTA pe3KO yBUIWtHBaeTC,T npEI OWHb CWIbHOM BnyBe HHXCKTHpyeMaR XAflKOCTb 

npOHBKaeT Ha 6onbmoe paCCTO5lHLie OT nJlaCTUHb1 H TOJIbKO 3aTeM non ilei%CTBHeM nO,XliMHOii CHnbl 

nOCTeneHH0 nOBOpa'iHBaeTCSl,CyXaeTCR H npe6nsXaeTcn K BepTHKanbHOMy HanpaBJleHwO. 


